Machine Learning Papers: Genetics and Genomics

MRCNN: a deep learning model for regression of genome-wide DNA methylation - Tian et al 2019

Determination of genome-wide DNA methylation is significant for both basic research and drug development. As a key epigenetic modification, this biochemical process can modulate gene expression to influence the cell differentiation which can possibly lead to cancer. Due to the involuted biochemical mechanism of DNA methylation, obtaining a precise prediction is a considerably tough challenge. Existing approaches have yielded good predictions, but the methods either need to combine plenty of features and prerequisites or deal with only hypermethylation and hypomethylation.

In this paper, we propose a deep learning method for prediction of the genome-wide DNA methylation, in which the Methylation Regression is implemented by Convolutional Neural Networks (MRCNN). Through minimizing the continuous loss function, experiments show that our model is convergent and more precise than the state-of-art method (DeepCpG) according to results of the evaluation. MRCNN also achieves the discovery of de novo motifs by analysis of features from the training process.

Genome-wide DNA methylation could be evaluated based on the corresponding local DNA sequences of target CpG loci. With the autonomous learning pattern of deep learning, MRCNN enables accurate predictions of genome-wide DNA methylation status without predefined features and discovers some de novo methylation-related motifs that match known motifs by extracting sequence patterns.

DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning - Angermueller et al 2017

Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.

Unsupervised Representation Learning of DNA Sequences - Agarwal et al 2019

Recently several deep learning models have been used for DNA sequence based classification tasks.
Often such tasks require long and variable length DNA sequences in the input. In this work, we use a sequence-to-sequence autoencoder model to learn a latent representation of a fixed dimension for long and variable length DNA sequences in an unsupervised manner. We evaluate both quantitatively and qualitatively the learned latent representation for a supervised task of splice site classification. The quantitative evaluation is done under two different settings. Our experiments show that these representations can be used as features or priors in closely related tasks such as splice site classification. Further, in our qualitative analysis, we use a model attribution technique Integrated Gradients to infer significant sequence signatures influencing the classification accuracy. We show the identified splice signatures resemble well with the existing knowledge.

DeepCAPE: a deep convolutional neural network for the accurate prediction of enhancers - Chen et al 2018

The establishment of a landscape of enhancers across human cells is crucial to deciphering the mechanism of gene regulation, cell differentiation, and disease development. High-throughput experimental approaches, though having successfully reported enhancers in typical cell lines, are still too costly and time consuming to perform systematic identification of enhancers specific to different cell lines under a variety of disease status. Existing computational methods, though capable of predicting regulatory elements purely relying on DNA sequences, lack the power of cell line-specific screening. Recent studies have suggested that chromatin accessibility of a DNA segment is closely related to its potential function in regulation, and thus may provide useful information in identifying regulatory elements. Motivated by the above understanding, we integrate DNA sequences and chromatin accessibility data to accurately predict enhancers in a cell line-specific manner. We proposed DeepCAPE, a deep convolutional neural network to predict enhancers via the integration of DNA sequences and DNase-seq data. We demonstrate that our model not only consistently outperforms existing methods in the classification of enhancers against background sequences, but also accurately predicts enhancers across different cell lines. We further visualize kernels of the first convolutional layer and show the match of identified sequence signatures and known motifs. We finally demonstrate the potential ability of our model to explain functional implications of putative disease-associated genetic variants and discriminate disease-related enhancers.

Deep learning: new computational modelling techniques for genomics - Eraslan et al 2019

As a data-driven science, genomics largely utilizes machine learning to capture dependencies in data and derive novel biological hypotheses. However, the ability to extract new insights from the exponentially increasing volume of genomics data requires more expressive machine learning models. By effectively leveraging large data sets, deep learning has transformed fields such as computer vision and natural language processing. Now, it is becoming the method of choice for many genomics modelling tasks, including predicting the impact of genetic variation on gene regulatory mechanisms such as DNA accessibility and splicing.

Supervised Machine Learning for Population Genetics: A New Paradigm - Schrider and Kern 2018

As population genomic datasets grow in size, researchers are faced with the daunting task of making sense of a flood of information. To keep pace with this explosion of data, computational methodologies for population genetic inference are rapidly being developed to best utilize genomic sequence data. In this review we discuss a new paradigm that has emerged in computational population genomics: that of supervised machine learning (ML). We review the fundamentals of ML, discuss recent applications of supervised ML to population genetics that outperform competing methods, and describe promising future directions in this area. Ultimately, we argue that supervised ML is an important and underutilized tool that has considerable potential for the world of evolutionary genomics.

Deep Learning for Genomics: A Concise Overview - Yue and Wang 2018

This data explosion driven by advancements in genomic research, such as high-throughput sequencing techniques, is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out current challenges and potential research directions for future genomics applications.

The Unreasonable Effectiveness of Convolutional Neural Networks in Population Genetic Inference - Flagel et al 2018

Population-scale genomic data sets have given researchers incredible amounts of information from which to infer evolutionary histories. Concomitant with this flood of data, theoretical and methodological advances have sought to extract information from genomic sequences to infer demographic events such as population size changes and gene flow among closely related populations/species, construct recombination maps, and uncover loci underlying recent adaptation. To date, most methods make use of only one or a few summaries of the input sequences and therefore ignore potentially useful information encoded in the data. The most sophisticated of these approaches involve likelihood calculations, which require theoretical advances for each new problem, and often focus on a single aspect of the data (e.g., only allele frequency information) in the interest of mathematical and computational tractability. Directly interrogating the entirety of the input sequence data in a likelihood-free manner would thus offer a fruitful alternative. Here, we accomplish this by representing DNA sequence alignments as images and using a class of deep learning methods called convolutional neural networks (CNNs) to make population genetic inferences from these images. We apply CNNs to a number of evolutionary questions and find that they frequently match or exceed the accuracy of current methods. Importantly, we show that CNNs perform accurate evolutionary model selection and parameter estimation, even on problems that have not received detailed theoretical treatments. Thus, when applied to population genetic alignments, CNNs are capable of outperforming expert-derived statistical methods and offer a new path forward in cases where no likelihood approach exists.

Pin It on Pinterest