We combine ideas from:
- Quant And Machine Learning Portfolio Construction: KNN Projections Using Futures Calibration Data
- Quant And Machine Learning Portfolio Construction: Random Weights, K-Means, Fixed Portfolio
to explore weights for the following portfolio.
Vanguard Stock Sectors and Treasury Bonds
Name | |
---|---|
VOX | Vanguard Communication Services ETF |
VCR | Vanguard Consumer Discretionary ETF |
VDC | Vanguard Consumer Staples ETF |
VDE | Vanguard Energy ETF |
VFH | Vanguard Financials ETF |
VHT | Vanguard Health Care ETF |
VIS | Vanguard Industrials ETF |
VGT | Vanguard Information Technology ETF |
VAW | Vanguard Materials ETF |
VNQ | Vanguard Real Estate ETF |
VPU | Vanguard Utilities ETF |
BIL | SPDR Bloomberg 1-3 Month T-Bill ETF |
IEF | iShares 7-10 Year Treasury Bond ETF |
IEI | iShares 3-7 Year Treasury Bond ETF |
SHY | iShares 1-3 Year Treasury Bond ETF |
TIP | iShares TIPS Bond ETF |
TLT | iShares 20+ Year Treasury Bond ETF |
Weights are generated via the following steps:
- Calibration data is identical to that in the first reference above.
- Choose a trade direction (long only here), generate 25000 sets of random weights (normalized).
- For each set of weights, simulate trades for 210 days, rebalancing each quarter, to generate a time series.
- Transform each time series into arrays of dual moving averages and implement the same robust scaler used in 1 (this was done in the first reference above for each asset in the portfolio).
Here we generate two sets of weights.
First, we match the transformed time series with calibration data using 50 nearest neighbors. Then we choose the best and worst 63 day projected: expectancy, 50th percentile percent return, long win percent.
Best and Worst 63 Day Projections
VOX | VCR | VDC | VDE | VFH | VHT | VIS | VGT | VAW | VNQ | VPU | BIL | IEF | IEI | SHY | TIP | TLT | 10th Pctl | 20th Pctl | 30th Pctl | 40th Pctl | 50th Pctl | 60th Pctl | 70th Pctl | 80th Pctl | 90th Pctl | Expectancy | Up % | Down % | Median Up | Median Down |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1286 | 0.1232 | 0.0669 | 0.0035 | 0.0123 | 0.0587 | 0.1298 | 0.0802 | 0.0079 | 0.0402 | 0.0189 | 0.1024 | 0.0161 | 0.0482 | 0.1443 | 0.0063 | 0.0127 | -1.0876 | -0.3688 | 0.3764 | 1.8199 | 3.363 | 6.4031 | 8.2897 | 8.9765 | 13.1252 | 5.6174 | 74.0 | 26.0 | 7.841 | -0.7113 |
0.1301 | 0.0119 | 0.0079 | 0.046 | 0.0169 | 0.0682 | 0.0708 | 0.1178 | 0.1021 | 0.0732 | 0.0485 | 0.0173 | 0.0531 | 0.0662 | 0.0043 | 0.117 | 0.0485 | -8.2174 | -4.3383 | -3.5372 | -2.6412 | -1.5049 | -0.6941 | -0.0462 | 1.2303 | 4.232 | -1.9376 | 30.0 | 70.0 | 1.617 | -3.461 |
0.1427 | 0.1061 | 0.1218 | 0.003 | 0.0019 | 0.1257 | 0.1448 | 0.1351 | 0.0064 | 0.0228 | 0.0156 | 0.0081 | 0.0501 | 0.0325 | 0.006 | 0.0347 | 0.0427 | -3.2925 | -0.5539 | 1.2787 | 3.0053 | 5.203 | 6.181 | 7.3816 | 9.3684 | 12.8239 | 4.5052 | 76.0 | 24.0 | 6.6167 | -2.1814 |
0.0351 | 0.0055 | 0.0169 | 0.1535 | 0.0999 | 0.0012 | 0.1102 | 0.0409 | 0.1135 | 0.1499 | 0.0181 | 0.0294 | 0.1185 | 0.0019 | 0.063 | 0.019 | 0.0234 | -6.4614 | -4.3498 | -3.5813 | -2.9341 | -2.1418 | -1.5564 | 0.8652 | 2.2212 | 4.8432 | -1.0785 | 34.0 | 66.0 | 3.2674 | -3.3172 |
0.1292 | 0.1256 | 0.0404 | 0.0348 | 0.032 | 0.0855 | 0.0185 | 0.1153 | 0.0642 | 0.0138 | 0.0812 | 0.0473 | 0.1058 | 0.0868 | 0.0067 | 0.0122 | 0.0007 | -0.7402 | 0.1798 | 1.6588 | 2.8016 | 4.2583 | 5.3393 | 7.3294 | 8.8134 | 15.3944 | 4.1946 | 82.0 | 18.0 | 5.335 | -1.0005 |
0.0033 | 0.0242 | 0.0426 | 0.0045 | 0.0017 | 0.0635 | 0.0465 | 0.0427 | 0.0768 | 0.0771 | 0.0281 | 0.0498 | 0.1123 | 0.1143 | 0.0651 | 0.1301 | 0.1173 | -3.9979 | -2.4309 | -1.9444 | -1.2286 | -0.7678 | -0.5412 | -0.1853 | 0.1396 | 2.2201 | -0.5455 | 26.0 | 74.0 | 2.081 | -1.4683 |
Second, we want to examine a broad range of weights. We do this by applying K-Means with 50 clusters to the 25000 sets of weights. The weight closest to its centroid is extracted and we present projections in the table below.
K-Means Weights and Projections
VOX | VCR | VDC | VDE | VFH | VHT | VIS | VGT | VAW | VNQ | VPU | BIL | IEF | IEI | SHY | TIP | TLT | 10th Pctl | 20th Pctl | 30th Pctl | 40th Pctl | 50th Pctl | 60th Pctl | 70th Pctl | 80th Pctl | 90th Pctl | Expectancy | Up % | Down % | Median Up | Median Down | Cluster Number |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0349 | 0.0808 | 0.0448 | 0.0771 | 0.0393 | 0.0483 | 0.0755 | 0.0436 | 0.0635 | 0.0733 | 0.0318 | 0.0704 | 0.0984 | 0.0215 | 0.0634 | 0.0791 | 0.0542 | -4.6346 | -2.9863 | -2.3276 | -1.1728 | -0.6621 | 0.0194 | 0.2913 | 0.8971 | 1.6682 | -1.0335 | 42.0 | 58.0 | 0.8121 | -2.3699 | 0 |
0.0342 | 0.045 | 0.0727 | 0.0423 | 0.0404 | 0.0717 | 0.09 | 0.0639 | 0.072 | 0.0476 | 0.0991 | 0.0349 | 0.0661 | 0.0404 | 0.0396 | 0.0604 | 0.0796 | -2.8931 | -1.546 | -1.0443 | -0.5992 | 0.4092 | 0.8761 | 1.6278 | 2.4499 | 5.1876 | 0.4294 | 56.0 | 44.0 | 1.9007 | -1.443 | 1 |
0.0941 | 0.0662 | 0.107 | 0.0175 | 0.0546 | 0.0344 | 0.045 | 0.0567 | 0.0797 | 0.0867 | 0.0924 | 0.0542 | 0.0255 | 0.0542 | 0.0387 | 0.0266 | 0.0664 | -4.4649 | -2.558 | -1.693 | -0.3847 | 0.1175 | 1.5119 | 3.8995 | 4.4759 | 6.2546 | 1.0835 | 54.0 | 46.0 | 4.0843 | -2.4393 | 2 |
0.0707 | 0.0656 | 0.0224 | 0.0783 | 0.0492 | 0.0856 | 0.0522 | 0.0675 | 0.0266 | 0.0844 | 0.0172 | 0.069 | 0.0806 | 0.0356 | 0.0786 | 0.0376 | 0.0788 | -4.4649 | -2.2082 | -1.1713 | -0.6602 | -0.2451 | 0.082 | 0.5734 | 1.5481 | 5.3843 | -0.1557 | 46.0 | 54.0 | 1.4418 | -1.5165 | 3 |
0.0705 | 0.071 | 0.0264 | 0.0435 | 0.076 | 0.0573 | 0.0628 | 0.0531 | 0.0685 | 0.0624 | 0.0638 | 0.0804 | 0.0781 | 0.0738 | 0.0529 | 0.0133 | 0.0461 | -4.6854 | -3.1498 | -2.2208 | -1.1888 | -0.4952 | 0.1149 | 1.4661 | 3.2544 | 6.2546 | 0.146 | 46.0 | 54.0 | 3.1356 | -2.4007 | 4 |
0.0785 | 0.0656 | 0.0889 | 0.0635 | 0.028 | 0.024 | 0.0489 | 0.0572 | 0.0974 | 0.089 | 0.0424 | 0.038 | 0.0534 | 0.0862 | 0.0266 | 0.0777 | 0.0347 | -4.2993 | -2.8131 | -2.0351 | -0.2032 | 0.5125 | 1.5691 | 3.3267 | 5.4588 | 8.9274 | 0.8667 | 58.0 | 42.0 | 3.4893 | -2.755 | 5 |
0.081 | 0.068 | 0.069 | 0.0546 | 0.0509 | 0.05 | 0.0694 | 0.0648 | 0.0567 | 0.0676 | 0.0902 | 0.0667 | 0.0619 | 0.0328 | 0.0222 | 0.0164 | 0.0778 | -5.0649 | -3.5374 | -2.2208 | -0.2533 | 0.2001 | 1.5119 | 3.3267 | 4.4498 | 7.0401 | 0.6808 | 56.0 | 44.0 | 3.6849 | -3.1425 | 6 |
0.0507 | 0.0551 | 0.0932 | 0.0936 | 0.0721 | 0.0807 | 0.0727 | 0.0787 | 0.043 | 0.0658 | 0.0103 | 0.0009 | 0.0322 | 0.0935 | 0.0663 | 0.0583 | 0.033 | -5.1466 | -3.691 | -2.9554 | -1.6304 | -0.5381 | 0.6779 | 2.2278 | 3.7848 | 7.3372 | -0.2004 | 48.0 | 52.0 | 3.3732 | -3.4992 | 7 |
0.0713 | 0.0581 | 0.0725 | 0.0198 | 0.0529 | 0.0795 | 0.0832 | 0.0732 | 0.0798 | 0.0376 | 0.017 | 0.0406 | 0.0764 | 0.0597 | 0.07 | 0.0299 | 0.0785 | -5.0649 | -2.8131 | -2.1858 | -0.7269 | 0.0674 | 1.1129 | 3.8995 | 4.3764 | 5.705 | 1.0359 | 52.0 | 48.0 | 4.1957 | -2.3871 | 8 |
0.0577 | 0.067 | 0.0423 | 0.0473 | 0.078 | 0.0228 | 0.0817 | 0.0617 | 0.0403 | 0.0089 | 0.0631 | 0.0817 | 0.0813 | 0.0655 | 0.0705 | 0.0669 | 0.0632 | -3.5 | -2.3215 | -1.4471 | -0.7623 | -0.3881 | 0.0242 | 0.2913 | 1.0824 | 2.2555 | -0.4555 | 44.0 | 56.0 | 0.8858 | -1.5094 | 9 |
0.0854 | 0.0678 | 0.08 | 0.052 | 0.0875 | 0.0278 | 0.0828 | 0.045 | 0.0696 | 0.0251 | 0.063 | 0.0426 | 0.062 | 0.0466 | 0.053 | 0.0604 | 0.0493 | -5.2531 | -4.1949 | -2.9736 | -1.783 | 0.0178 | 0.8953 | 1.7866 | 3.7888 | 8.3424 | -0.1365 | 50.0 | 50.0 | 3.2571 | -3.5301 | 10 |
0.015 | 0.0286 | 0.0943 | 0.047 | 0.063 | 0.056 | 0.0728 | 0.0996 | 0.0615 | 0.0519 | 0.0536 | 0.083 | 0.089 | 0.0362 | 0.0877 | 0.0288 | 0.032 | -2.8931 | -1.5096 | -1.0898 | -0.6326 | -0.0518 | 0.22 | 0.8032 | 1.4885 | 2.0853 | -0.0444 | 50.0 | 50.0 | 1.2375 | -1.3264 | 11 |
0.0683 | 0.0323 | 0.0493 | 0.0596 | 0.0854 | 0.0669 | 0.0664 | 0.0258 | 0.1003 | 0.0218 | 0.0601 | 0.0314 | 0.0553 | 0.0645 | 0.0615 | 0.0923 | 0.059 | -3.8539 | -3.0278 | -1.3466 | -0.5992 | 0.2354 | 0.6279 | 1.4928 | 2.1155 | 5.9416 | -0.4007 | 56.0 | 44.0 | 1.5381 | -2.8682 | 12 |
0.0779 | 0.0807 | 0.0435 | 0.0736 | 0.0576 | 0.0857 | 0.0028 | 0.0603 | 0.0466 | 0.0753 | 0.0787 | 0.085 | 0.0176 | 0.0441 | 0.061 | 0.0632 | 0.0464 | -4.6854 | -2.3277 | -1.3099 | -0.6123 | 0.0435 | 0.3124 | 1.3339 | 2.7327 | 6.2546 | -0.1741 | 54.0 | 46.0 | 1.5371 | -2.1828 | 13 |
0.0265 | 0.011 | 0.0677 | 0.0294 | 0.0541 | 0.041 | 0.1125 | 0.0389 | 0.0815 | 0.0894 | 0.0536 | 0.0553 | 0.0372 | 0.0963 | 0.0738 | 0.0543 | 0.0776 | -4.0519 | -2.3301 | -1.9168 | -1.0926 | 0.2319 | 1.0875 | 2.8048 | 3.7104 | 5.3254 | 0.7079 | 54.0 | 46.0 | 3.2528 | -2.2796 | 14 |
0.0675 | 0.0759 | 0.0788 | 0.0299 | 0.0815 | 0.0662 | 0.0381 | 0.0398 | 0.0529 | 0.0621 | 0.0693 | 0.0362 | 0.075 | 0.0434 | 0.028 | 0.0774 | 0.0778 | -2.8931 | -2.0494 | -1.2248 | -0.6326 | 0.0435 | 0.3211 | 0.8032 | 1.6066 | 2.673 | -0.2015 | 54.0 | 46.0 | 0.9723 | -1.5794 | 15 |
0.0519 | 0.0883 | 0.0416 | 0.0691 | 0.0666 | 0.0679 | 0.0281 | 0.0606 | 0.0791 | 0.0198 | 0.0749 | 0.0429 | 0.0647 | 0.0497 | 0.052 | 0.0611 | 0.0816 | -3.0888 | -2.3277 | -1.1713 | -0.6602 | -0.2451 | 0.1149 | 0.5627 | 1.2984 | 1.8624 | -0.365 | 48.0 | 52.0 | 0.8922 | -1.5254 | 16 |
0.026 | 0.0233 | 0.0796 | 0.0702 | 0.0944 | 0.0426 | 0.0945 | 0.0793 | 0.0417 | 0.0502 | 0.0408 | 0.0227 | 0.0839 | 0.0631 | 0.0613 | 0.092 | 0.0344 | -4.6854 | -3.5495 | -2.51 | -1.2308 | -0.6621 | -0.1774 | 0.2187 | 0.9003 | 1.6682 | -1.1367 | 40.0 | 60.0 | 1.0325 | -2.5828 | 17 |
0.0319 | 0.112 | 0.0802 | 0.0917 | 0.0625 | 0.0624 | 0.0546 | 0.0934 | 0.036 | 0.0351 | 0.0465 | 0.0238 | 0.0885 | 0.0519 | 0.0147 | 0.0442 | 0.0707 | -5.1466 | -4.2077 | -2.8698 | -1.783 | -0.9244 | -0.0694 | 0.535 | 2.1876 | 4.0298 | -0.7546 | 38.0 | 62.0 | 2.5091 | -2.755 | 18 |
0.088 | 0.0169 | 0.0513 | 0.0596 | 0.0727 | 0.0716 | 0.0702 | 0.0657 | 0.0567 | 0.0711 | 0.0273 | 0.0305 | 0.072 | 0.0794 | 0.0544 | 0.0483 | 0.0643 | -4.6854 | -2.8063 | -1.2846 | -0.6602 | -0.0956 | 0.1149 | 0.5734 | 1.4885 | 4.3443 | -0.4959 | 48.0 | 52.0 | 1.0733 | -1.9445 | 19 |
0.0299 | 0.0387 | 0.0878 | 0.0221 | 0.05 | 0.0788 | 0.071 | 0.0184 | 0.0572 | 0.0581 | 0.0912 | 0.0774 | 0.0359 | 0.0736 | 0.059 | 0.0728 | 0.0781 | -4.6409 | -3.3493 | -1.8406 | -1.0791 | -0.4435 | 1.3049 | 2.1352 | 3.0225 | 4.6864 | -0.2411 | 46.0 | 54.0 | 2.7155 | -2.7597 | 20 |
0.0866 | 0.0526 | 0.0616 | 0.0643 | 0.0237 | 0.0273 | 0.0358 | 0.0948 | 0.033 | 0.0519 | 0.0299 | 0.0939 | 0.0215 | 0.0635 | 0.0843 | 0.0844 | 0.0909 | -3.7963 | -3.0334 | -1.6334 | -1.2621 | -0.6436 | -0.0613 | 0.4972 | 1.6222 | 2.3912 | -0.3211 | 40.0 | 60.0 | 1.709 | -1.6745 | 21 |
0.0398 | 0.0744 | 0.0722 | 0.0632 | 0.0774 | 0.0611 | 0.0765 | 0.0746 | 0.0509 | 0.0504 | 0.0715 | 0.0734 | 0.0218 | 0.0302 | 0.018 | 0.0765 | 0.068 | -5.1169 | -4.1949 | -3.0593 | -2.2335 | -1.1055 | 0.4852 | 1.5707 | 3.601 | 7.2739 | -0.3996 | 46.0 | 54.0 | 3.2571 | -3.5145 | 22 |
0.1007 | 0.0989 | 0.0396 | 0.0323 | 0.0541 | 0.0708 | 0.0627 | 0.0787 | 0.0209 | 0.0094 | 0.0403 | 0.0568 | 0.0441 | 0.0917 | 0.0446 | 0.0796 | 0.0748 | -7.085 | -3.8227 | -2.2666 | -1.343 | -0.2517 | -0.0377 | 1.5303 | 4.1289 | 5.1719 | 0.2887 | 40.0 | 60.0 | 4.1957 | -2.3159 | 23 |
0.0739 | 0.0528 | 0.0651 | 0.0663 | 0.0787 | 0.0298 | 0.059 | 0.0382 | 0.0558 | 0.0729 | 0.0143 | 0.0536 | 0.0805 | 0.0775 | 0.0773 | 0.0312 | 0.073 | -4.6346 | -3.1295 | -2.3368 | -1.1728 | -0.6621 | 0.0194 | 0.2913 | 0.8971 | 1.6682 | -1.0513 | 42.0 | 58.0 | 0.8121 | -2.4007 | 24 |
0.0627 | 0.0614 | 0.0802 | 0.0289 | 0.0688 | 0.029 | 0.0514 | 0.0514 | 0.0929 | 0.0455 | 0.0832 | 0.0392 | 0.0301 | 0.0871 | 0.0013 | 0.098 | 0.0888 | -3.0888 | -2.168 | -1.4234 | -0.6602 | 0.0435 | 0.3211 | 0.8601 | 1.7887 | 2.673 | -0.2666 | 54.0 | 46.0 | 1.2375 | -2.0323 | 25 |
0.0727 | 0.0372 | 0.0367 | 0.0331 | 0.0232 | 0.0825 | 0.0324 | 0.0856 | 0.0547 | 0.0304 | 0.0935 | 0.0643 | 0.0586 | 0.0738 | 0.0817 | 0.0878 | 0.0518 | -2.9108 | -1.8221 | -1.2618 | -0.1272 | 0.4764 | 0.8884 | 1.4501 | 2.8069 | 4.992 | 0.1444 | 56.0 | 44.0 | 1.6702 | -1.7976 | 26 |
0.0604 | 0.0379 | 0.0678 | 0.0703 | 0.0463 | 0.0447 | 0.0768 | 0.0736 | 0.0776 | 0.0412 | 0.0816 | 0.0872 | 0.044 | 0.0415 | 0.0588 | 0.0346 | 0.0556 | -4.6854 | -2.3277 | -1.3099 | -0.6123 | 0.0195 | 0.22 | 1.0014 | 2.1109 | 6.2546 | -0.1074 | 52.0 | 48.0 | 1.5299 | -1.8811 | 27 |
0.0836 | 0.0804 | 0.078 | 0.0886 | 0.0051 | 0.0761 | 0.0656 | 0.0785 | 0.0321 | 0.0622 | 0.0767 | 0.0618 | 0.0393 | 0.0485 | 0.071 | 0.0485 | 0.0039 | -8.951 | -4.4103 | -3.4931 | -2.2596 | -0.9244 | -0.2784 | 0.535 | 2.1876 | 4.0298 | -1.0809 | 36.0 | 64.0 | 2.8831 | -3.3107 | 28 |
0.0643 | 0.0529 | 0.0556 | 0.0552 | 0.0381 | 0.0372 | 0.0373 | 0.0279 | 0.0283 | 0.1039 | 0.0769 | 0.0916 | 0.0908 | 0.0369 | 0.0693 | 0.0967 | 0.037 | -3.795 | -2.2845 | -1.7282 | -1.1464 | -0.0104 | 0.4682 | 1.7018 | 3.0568 | 4.9941 | 0.0702 | 50.0 | 50.0 | 2.3091 | -2.1687 | 29 |
0.0465 | 0.0507 | 0.0435 | 0.063 | 0.0557 | 0.0983 | 0.0664 | 0.1027 | 0.0405 | 0.0801 | 0.0095 | 0.0646 | 0.0123 | 0.0374 | 0.0502 | 0.0756 | 0.1028 | -5.0649 | -3.1425 | -2.2208 | -0.7478 | 0.0622 | 0.7009 | 3.2838 | 4.3136 | 6.2546 | 0.771 | 52.0 | 48.0 | 3.9122 | -2.6319 | 30 |
0.0762 | 0.0924 | 0.0264 | 0.0494 | 0.0525 | 0.0351 | 0.088 | 0.0291 | 0.0638 | 0.0896 | 0.0392 | 0.0425 | 0.0399 | 0.0751 | 0.074 | 0.0897 | 0.037 | -5.0531 | -3.5374 | -2.3484 | -1.1926 | 0.0178 | 0.7009 | 1.6267 | 3.5675 | 7.2739 | -0.1229 | 50.0 | 50.0 | 2.5091 | -2.755 | 31 |
0.0586 | 0.0195 | 0.0746 | 0.0361 | 0.0611 | 0.0858 | 0.0275 | 0.0742 | 0.083 | 0.0568 | 0.0664 | 0.0601 | 0.0711 | 0.0199 | 0.0661 | 0.0824 | 0.0568 | -3.551 | -2.0494 | -1.4234 | -0.6561 | 0.2825 | 0.8045 | 1.5008 | 2.3141 | 5.1507 | 0.1409 | 54.0 | 46.0 | 1.6673 | -1.6509 | 32 |
0.0315 | 0.0539 | 0.043 | 0.0422 | 0.0796 | 0.0646 | 0.0175 | 0.0859 | 0.0907 | 0.0751 | 0.0749 | 0.0234 | 0.0285 | 0.0753 | 0.0762 | 0.0832 | 0.0547 | -3.0875 | -2.0878 | -1.2248 | -0.6602 | 0.0195 | 0.3124 | 0.8032 | 1.4885 | 2.2878 | -0.1626 | 52.0 | 48.0 | 1.1049 | -1.5358 | 33 |
0.0512 | 0.0655 | 0.0211 | 0.0556 | 0.0779 | 0.0379 | 0.008 | 0.0444 | 0.0857 | 0.0744 | 0.0289 | 0.1033 | 0.0244 | 0.103 | 0.0907 | 0.0718 | 0.0561 | -3.5009 | -2.1789 | -1.0879 | -0.5992 | 0.2179 | 0.5819 | 0.8916 | 1.689 | 3.163 | -0.2579 | 54.0 | 46.0 | 1.2375 | -2.0133 | 34 |
0.0416 | 0.0282 | 0.0891 | 0.0692 | 0.0516 | 0.0884 | 0.0763 | 0.0308 | 0.0573 | 0.0782 | 0.0235 | 0.0888 | 0.0116 | 0.0568 | 0.073 | 0.0525 | 0.0833 | -4.2315 | -2.6969 | -1.9648 | -1.023 | 0.2497 | 0.6384 | 1.6999 | 3.0501 | 5.3621 | -0.1358 | 56.0 | 44.0 | 1.7791 | -2.573 | 35 |
0.0138 | 0.0698 | 0.0643 | 0.0884 | 0.1022 | 0.0076 | 0.0327 | 0.0876 | 0.0788 | 0.0939 | 0.0569 | 0.0835 | 0.0247 | 0.0455 | 0.059 | 0.0278 | 0.0637 | -4.4893 | -3.3598 | -2.3693 | -1.1926 | -0.2368 | 0.7009 | 1.5766 | 2.5134 | 5.4929 | -0.4948 | 48.0 | 52.0 | 2.015 | -2.8115 | 36 |
0.065 | 0.0849 | 0.0516 | 0.051 | 0.0461 | 0.0104 | 0.0739 | 0.045 | 0.0828 | 0.0486 | 0.0375 | 0.0676 | 0.0927 | 0.0625 | 0.0728 | 0.0529 | 0.0547 | -4.4649 | -2.2082 | -1.0401 | -0.3847 | 0.0435 | 0.4923 | 1.1782 | 3.9212 | 5.7189 | 0.0716 | 52.0 | 48.0 | 1.586 | -1.5691 | 37 |
0.0546 | 0.063 | 0.0149 | 0.0887 | 0.0468 | 0.0429 | 0.0666 | 0.0671 | 0.0383 | 0.0778 | 0.0581 | 0.1001 | 0.0772 | 0.0413 | 0.0391 | 0.0384 | 0.0849 | -4.462 | -2.4735 | -1.2945 | -0.7623 | -0.2368 | 0.1149 | 0.5627 | 1.0284 | 1.8624 | -0.6018 | 48.0 | 52.0 | 0.8528 | -1.9445 | 38 |
0.0618 | 0.0402 | 0.0809 | 0.0398 | 0.0961 | 0.0413 | 0.0537 | 0.0552 | 0.0863 | 0.0226 | 0.0927 | 0.0603 | 0.082 | 0.0581 | 0.0371 | 0.0399 | 0.0519 | -3.8539 | -2.9863 | -1.5649 | -1.0582 | -0.6025 | 0.082 | 0.5627 | 1.2984 | 2.1236 | -0.6779 | 46.0 | 54.0 | 1.2375 | -2.3095 | 39 |
0.0774 | 0.0846 | 0.0958 | 0.0331 | 0.0521 | 0.0424 | 0.0912 | 0.0567 | 0.0411 | 0.0652 | 0.088 | 0.0408 | 0.0763 | 0.0526 | 0.0412 | 0.0275 | 0.0341 | -5.2401 | -3.6617 | -2.4601 | -1.3638 | -0.0693 | 0.629 | 2.2278 | 4.2424 | 7.2739 | 0.1466 | 48.0 | 52.0 | 3.6849 | -3.1194 | 40 |
0.0334 | 0.0789 | 0.0398 | 0.0679 | 0.0493 | 0.0371 | 0.057 | 0.0333 | 0.0696 | 0.0871 | 0.0391 | 0.0524 | 0.0708 | 0.0804 | 0.0897 | 0.0564 | 0.0578 | -3.5009 | -2.2445 | -1.3466 | -0.6326 | 0.1168 | 0.4862 | 0.9397 | 1.689 | 2.6701 | -0.2492 | 52.0 | 48.0 | 1.3879 | -2.0228 | 41 |
0.0601 | 0.0631 | 0.0705 | 0.0538 | 0.0526 | 0.0696 | 0.0384 | 0.0917 | 0.0793 | 0.0364 | 0.0409 | 0.0819 | 0.0708 | 0.0234 | 0.0516 | 0.0922 | 0.0237 | -5.2401 | -4.2071 | -2.4601 | -1.3638 | 0.0178 | 1.1129 | 3.3267 | 5.0867 | 8.3424 | 0.2147 | 50.0 | 50.0 | 3.944 | -3.5145 | 42 |
0.0325 | 0.0776 | 0.0839 | 0.0789 | 0.0705 | 0.0767 | 0.0783 | 0.0145 | 0.0227 | 0.0321 | 0.0948 | 0.0732 | 0.0747 | 0.0485 | 0.0477 | 0.0625 | 0.0307 | -3.8741 | -2.9051 | -1.9648 | -0.7803 | 0.1168 | 0.5819 | 1.3339 | 2.0433 | 5.3621 | -0.3525 | 52.0 | 48.0 | 1.6104 | -2.4788 | 43 |
0.0368 | 0.0298 | 0.0222 | 0.0841 | 0.0215 | 0.091 | 0.0554 | 0.0647 | 0.0953 | 0.0836 | 0.0447 | 0.0906 | 0.034 | 0.0755 | 0.035 | 0.0937 | 0.0421 | -3.7222 | -2.7873 | -1.3466 | -0.6602 | 0.043 | 0.4862 | 1.2421 | 1.7887 | 4.5896 | -0.2145 | 52.0 | 48.0 | 1.5014 | -2.0734 | 44 |
0.0357 | 0.0844 | 0.0559 | 0.0903 | 0.0461 | 0.0539 | 0.0648 | 0.0967 | 0.0519 | 0.0117 | 0.0948 | 0.0587 | 0.0114 | 0.089 | 0.0423 | 0.0442 | 0.0681 | -5.0649 | -3.5374 | -2.4601 | -1.3638 | 0.2001 | 1.5119 | 3.2141 | 5.0867 | 8.3424 | 0.2676 | 54.0 | 46.0 | 3.4893 | -3.5145 | 45 |
0.0367 | 0.0586 | 0.0375 | 0.0661 | 0.0727 | 0.0735 | 0.0248 | 0.0987 | 0.0504 | 0.0498 | 0.0763 | 0.0566 | 0.0266 | 0.0679 | 0.0839 | 0.042 | 0.078 | -3.0888 | -2.376 | -1.2552 | -0.6602 | -0.2451 | 0.1484 | 0.6732 | 1.4885 | 2.0853 | -0.2645 | 48.0 | 52.0 | 1.1126 | -1.5358 | 46 |
0.0343 | 0.0468 | 0.1046 | 0.0815 | 0.0254 | 0.0758 | 0.0081 | 0.0647 | 0.0867 | 0.0355 | 0.082 | 0.0485 | 0.0537 | 0.0702 | 0.0121 | 0.0997 | 0.0706 | -2.8329 | -2.2614 | -1.4241 | -0.6285 | 0.1185 | 0.6313 | 1.6999 | 2.775 | 4.9941 | 0.1036 | 52.0 | 48.0 | 1.9735 | -1.9222 | 47 |
0.0057 | 0.0436 | 0.0768 | 0.1016 | 0.0614 | 0.0204 | 0.0429 | 0.0658 | 0.0302 | 0.0967 | 0.0951 | 0.0248 | 0.0366 | 0.057 | 0.0933 | 0.0951 | 0.053 | -4.0519 | -2.2921 | -1.4466 | -0.1399 | 0.2896 | 1.4861 | 2.0093 | 3.9046 | 5.9416 | 0.3914 | 58.0 | 42.0 | 2.3091 | -2.2568 | 48 |
0.0954 | 0.0406 | 0.0223 | 0.0686 | 0.0801 | 0.0679 | 0.0708 | 0.0626 | 0.0897 | 0.0279 | 0.0846 | 0.0775 | 0.0357 | 0.0243 | 0.0725 | 0.0285 | 0.051 | -5.1466 | -4.1949 | -3.2414 | -2.2854 | -0.9178 | 0.2945 | 1.3477 | 3.3035 | 6.1429 | -0.691 | 44.0 | 56.0 | 2.8831 | -3.4992 | 49 |
Additionally, we employ multidimensional scaling to convert K-Means weights to a two dimensional representation and plot them.
Multidimensional Scaling K-Means Weights – Open in a new tab, place cursor on circles to display data, use the tools on the right side to enable zooming in and out, etc.
Our goal in this analysis is to explore a large possible number of weights for a given portfolio. We note that views can be expressed by specifying calibration data, data representation, simulation days and rebalancing, projection days, etc. Thus the emphasis is on exploration rather than optimization.