This is the first in what will be a series of articles exploring how to use quantitative and machine learning methods to construct portfolios. By construction, we mean some combination of selecting assets and determining weights.
We describe a method of taking a fixed portfolio and generating a range of possible weights to use as a guide in setting actual weights for the portfolio. Here are the steps:
- Choose a portfolio – We use the 2023 Dogs Of The Dow portfolio.
- Set the following parameters – trade direction (long or long/short), use cash (if yes, we use the T-bill ETF BIL).
- Generate 100,000 sets of random weights, using uniform random weights that are then normalized.
- Simulate for 21, 63, 126, 189, and 252 days before the current day and decide if rebalancing should be used. In this example we rebalance at the end of each quarter if the number of simulation days are greater than 63.
- Each simulation creates a time series. For each time series, record various performance measures. Here we compute: total return, maximum drawdown, and pseudo mar (total return/maximum drawdown).
- Apply K-Means to the weights with N clusters. In this example we set N=15. Select the N weights that are closest to their respective centroids.
K-Means is technically a data partition algorithm, rather than a cluster algorithm. As such, it takes the 100,000 sets of weights and reduces them to 15 sets that are distributed in the data space of the random weights. Note that there is no optimization here. Our goal is to generate a set of weights that have had various outcomes over the last given number of formation days.
Using various formation days is important as the assets in a portfolio can display various behaviors over various time periods. Some mean revert, some trend, some are range bound, etc. Thus we could use known market conditions over the last number of formation days and combine this with even vague opinions about future conditions to examine weights that resulted in gains, losses, or were relatively flat.
Results:
Name | |
---|---|
VZ | Verizon Communications |
DOW | Dow |
INTC | Intel |
WBA | Walgreens Boots Alliance |
MMM | 3M |
IBM | International Business Machines |
AMGN | Amgen |
CSCO | Cisco Systems |
CVX | Chevron |
JPM | JPMorgan Chase & Co. |
Formation Days | VZ | DOW | INTC | WBA | MMM | IBM | AMGN | CSCO | CVX | JPM | total_return | maximum_drawdown | pseudo_mar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21 | 0.1476 | 0.1204 | 0.13 | 0.1312 | 0.075 | 0.0702 | 0.0762 | 0.0565 | 0.1433 | 0.0495 | 5.0022 | 2.3587 | 2.1207 |
21 | 0.0706 | 0.0817 | 0.1465 | 0.0914 | 0.1045 | 0.0518 | 0.1478 | 0.149 | 0.0865 | 0.0703 | 6.1121 | 2.2055 | 2.7713 |
21 | 0.0773 | 0.1371 | 0.1102 | 0.0537 | 0.1371 | 0.0627 | 0.0815 | 0.0966 | 0.1324 | 0.1114 | 6.4943 | 2.2123 | 2.9355 |
21 | 0.1434 | 0.1208 | 0.0679 | 0.1015 | 0.151 | 0.0848 | 0.1257 | 0.073 | 0.0812 | 0.0507 | 5.6966 | 2.061 | 2.764 |
21 | 0.0663 | 0.1069 | 0.1424 | 0.1035 | 0.1509 | 0.1307 | 0.052 | 0.1047 | 0.0725 | 0.07 | 6.6363 | 2.182 | 3.0414 |
21 | 0.1196 | 0.0719 | 0.1024 | 0.0437 | 0.1253 | 0.1374 | 0.0721 | 0.1241 | 0.1173 | 0.0863 | 6.1054 | 2.0893 | 2.9223 |
21 | 0.0626 | 0.0556 | 0.1109 | 0.1122 | 0.0816 | 0.1263 | 0.0629 | 0.0893 | 0.1466 | 0.152 | 7.0246 | 1.933 | 3.6341 |
21 | 0.0704 | 0.1641 | 0.0461 | 0.069 | 0.084 | 0.1187 | 0.1209 | 0.1251 | 0.1598 | 0.0418 | 5.7839 | 1.8114 | 3.1931 |
21 | 0.1357 | 0.0755 | 0.0864 | 0.065 | 0.092 | 0.0429 | 0.1364 | 0.0968 | 0.1332 | 0.1361 | 5.9743 | 2.0264 | 2.9482 |
21 | 0.1227 | 0.0758 | 0.0897 | 0.1394 | 0.052 | 0.1399 | 0.1626 | 0.1091 | 0.0408 | 0.068 | 5.612 | 1.8149 | 3.0922 |
21 | 0.1318 | 0.148 | 0.1397 | 0.0739 | 0.034 | 0.1463 | 0.0458 | 0.0937 | 0.0455 | 0.1415 | 5.683 | 1.8703 | 3.0385 |
21 | 0.0457 | 0.1274 | 0.1271 | 0.1539 | 0.0716 | 0.0593 | 0.154 | 0.0477 | 0.0941 | 0.1191 | 6.536 | 1.9674 | 3.3221 |
21 | 0.0901 | 0.0836 | 0.0705 | 0.0758 | 0.1333 | 0.1349 | 0.1254 | 0.0632 | 0.0801 | 0.143 | 6.9733 | 1.9733 | 3.5338 |
21 | 0.0711 | 0.0464 | 0.103 | 0.1349 | 0.1399 | 0.0778 | 0.1332 | 0.1111 | 0.1427 | 0.0399 | 6.3655 | 2.0968 | 3.0358 |
21 | 0.1354 | 0.0938 | 0.0779 | 0.1255 | 0.1232 | 0.0618 | 0.0423 | 0.1303 | 0.0675 | 0.1423 | 6.5421 | 1.774 | 3.6877 |
63 | 0.0546 | 0.0971 | 0.1218 | 0.082 | 0.0662 | 0.057 | 0.1449 | 0.0966 | 0.1403 | 0.1395 | 5.6782 | 6.3901 | 0.8886 |
63 | 0.0694 | 0.082 | 0.0411 | 0.0714 | 0.1288 | 0.1444 | 0.1214 | 0.124 | 0.0962 | 0.1215 | 6.3107 | 5.067 | 1.2455 |
63 | 0.1366 | 0.1442 | 0.08 | 0.0696 | 0.0785 | 0.1156 | 0.1162 | 0.0931 | 0.0598 | 0.1064 | 5.3627 | 6.0512 | 0.8862 |
63 | 0.0724 | 0.0638 | 0.1069 | 0.1178 | 0.1437 | 0.065 | 0.076 | 0.1305 | 0.1444 | 0.0795 | 5.4502 | 6.4079 | 0.8505 |
63 | 0.099 | 0.119 | 0.0543 | 0.1416 | 0.1292 | 0.0734 | 0.1572 | 0.0886 | 0.0883 | 0.0494 | 3.178 | 7.0526 | 0.4506 |
63 | 0.1444 | 0.1498 | 0.132 | 0.1202 | 0.0437 | 0.0845 | 0.0757 | 0.0835 | 0.1045 | 0.0616 | 4.1357 | 7.2034 | 0.5741 |
63 | 0.1343 | 0.0587 | 0.0632 | 0.136 | 0.0461 | 0.0814 | 0.1442 | 0.1237 | 0.1123 | 0.1002 | 3.5586 | 6.4195 | 0.5543 |
63 | 0.0981 | 0.1205 | 0.1046 | 0.0758 | 0.0976 | 0.0786 | 0.0628 | 0.1551 | 0.0528 | 0.154 | 7.3619 | 5.4069 | 1.3616 |
63 | 0.1187 | 0.0644 | 0.1435 | 0.0752 | 0.1427 | 0.061 | 0.143 | 0.1291 | 0.0424 | 0.08 | 6.3623 | 6.5503 | 0.9713 |
63 | 0.1439 | 0.0807 | 0.1261 | 0.0573 | 0.0547 | 0.1456 | 0.0812 | 0.0796 | 0.1258 | 0.1051 | 5.9129 | 6.0484 | 0.9776 |
63 | 0.1327 | 0.0516 | 0.058 | 0.1196 | 0.1658 | 0.0917 | 0.0737 | 0.0885 | 0.0685 | 0.1499 | 5.4611 | 6.2294 | 0.8767 |
63 | 0.14 | 0.1455 | 0.064 | 0.0439 | 0.127 | 0.0836 | 0.0467 | 0.0973 | 0.1568 | 0.0952 | 5.0611 | 6.0587 | 0.8353 |
63 | 0.065 | 0.1151 | 0.1498 | 0.0716 | 0.1592 | 0.1469 | 0.05 | 0.056 | 0.0823 | 0.104 | 7.6466 | 6.2124 | 1.2309 |
63 | 0.0779 | 0.119 | 0.0549 | 0.1418 | 0.0748 | 0.1375 | 0.0937 | 0.0751 | 0.1522 | 0.0731 | 3.7336 | 6.3842 | 0.5848 |
63 | 0.0674 | 0.0696 | 0.1345 | 0.148 | 0.0776 | 0.1377 | 0.1319 | 0.0681 | 0.064 | 0.1011 | 5.6103 | 6.6867 | 0.839 |
126 | 0.1327 | 0.0986 | 0.1374 | 0.1466 | 0.1123 | 0.0637 | 0.0567 | 0.0583 | 0.0539 | 0.1398 | 0.9508 | 10.6143 | 0.0896 |
126 | 0.0657 | 0.0386 | 0.0726 | 0.1297 | 0.1399 | 0.0745 | 0.1309 | 0.1332 | 0.0628 | 0.1521 | 1.7568 | 9.2198 | 0.1905 |
126 | 0.0691 | 0.1049 | 0.1368 | 0.0481 | 0.1026 | 0.0858 | 0.1327 | 0.068 | 0.1388 | 0.1132 | 1.2186 | 9.4382 | 0.1291 |
126 | 0.0497 | 0.1443 | 0.1308 | 0.0547 | 0.0997 | 0.112 | 0.046 | 0.1442 | 0.0873 | 0.1313 | 3.5064 | 8.4311 | 0.4159 |
126 | 0.1362 | 0.1335 | 0.081 | 0.1062 | 0.0868 | 0.1181 | 0.0855 | 0.1304 | 0.0425 | 0.0797 | 0.0648 | 10.0697 | 0.0064 |
126 | 0.1081 | 0.0851 | 0.113 | 0.0888 | 0.0577 | 0.0873 | 0.062 | 0.133 | 0.1417 | 0.1234 | 1.4221 | 8.6022 | 0.1653 |
126 | 0.1001 | 0.0461 | 0.1008 | 0.0623 | 0.1437 | 0.1428 | 0.0684 | 0.1176 | 0.1183 | 0.0998 | 1.7619 | 8.877 | 0.1985 |
126 | 0.1301 | 0.0688 | 0.0664 | 0.1244 | 0.0724 | 0.1103 | 0.1349 | 0.0649 | 0.1348 | 0.0932 | -1.7224 | 10.0921 | -0.1707 |
126 | 0.1391 | 0.1336 | 0.1686 | 0.0701 | 0.0688 | 0.1363 | 0.082 | 0.0709 | 0.0888 | 0.0417 | 0.2995 | 10.0547 | 0.0298 |
126 | 0.0654 | 0.1362 | 0.052 | 0.0836 | 0.0459 | 0.128 | 0.1372 | 0.1341 | 0.1324 | 0.0853 | -0.4038 | 9.0673 | -0.0445 |
126 | 0.0741 | 0.1063 | 0.1516 | 0.1404 | 0.0908 | 0.1243 | 0.1104 | 0.0733 | 0.0826 | 0.0464 | 0.1455 | 10.3639 | 0.014 |
126 | 0.1328 | 0.1388 | 0.0618 | 0.0533 | 0.1274 | 0.0915 | 0.1283 | 0.0674 | 0.0469 | 0.1517 | 0.27 | 10.1475 | 0.0266 |
126 | 0.0582 | 0.154 | 0.1045 | 0.1299 | 0.1182 | 0.0716 | 0.1 | 0.0756 | 0.1159 | 0.0719 | -0.5777 | 10.7615 | -0.0537 |
126 | 0.0463 | 0.1074 | 0.0894 | 0.1365 | 0.0534 | 0.1407 | 0.0869 | 0.074 | 0.1266 | 0.1389 | 0.7092 | 9.1078 | 0.0779 |
126 | 0.134 | 0.0756 | 0.1585 | 0.0487 | 0.0917 | 0.0857 | 0.1611 | 0.1282 | 0.0546 | 0.062 | 1.3723 | 9.3221 | 0.1472 |
189 | 0.0476 | 0.1225 | 0.1359 | 0.0506 | 0.0793 | 0.1489 | 0.0661 | 0.1424 | 0.0715 | 0.1352 | 15.3057 | 10.1059 | 1.5145 |
189 | 0.038 | 0.0936 | 0.144 | 0.0729 | 0.1298 | 0.0856 | 0.0991 | 0.085 | 0.131 | 0.121 | 11.7915 | 11.4602 | 1.0289 |
189 | 0.1398 | 0.136 | 0.0672 | 0.1401 | 0.0943 | 0.0988 | 0.0425 | 0.0652 | 0.075 | 0.1409 | 10.41 | 12.0845 | 0.8614 |
189 | 0.1403 | 0.0673 | 0.076 | 0.1484 | 0.1475 | 0.0459 | 0.1131 | 0.0483 | 0.1355 | 0.0776 | 5.9471 | 13.9888 | 0.4251 |
189 | 0.116 | 0.0558 | 0.1366 | 0.1166 | 0.1441 | 0.1504 | 0.0549 | 0.0831 | 0.0751 | 0.0673 | 10.4211 | 12.1475 | 0.8579 |
189 | 0.0577 | 0.075 | 0.0974 | 0.1296 | 0.0426 | 0.1413 | 0.1265 | 0.0519 | 0.1301 | 0.148 | 10.0855 | 11.8878 | 0.8484 |
189 | 0.1558 | 0.0657 | 0.1175 | 0.0797 | 0.0553 | 0.1053 | 0.1222 | 0.0894 | 0.1271 | 0.0819 | 9.5865 | 11.5923 | 0.827 |
189 | 0.0725 | 0.1026 | 0.1459 | 0.1477 | 0.057 | 0.068 | 0.0531 | 0.1269 | 0.157 | 0.0693 | 10.9199 | 10.8211 | 1.0091 |
189 | 0.1355 | 0.0428 | 0.0961 | 0.097 | 0.0761 | 0.1539 | 0.1362 | 0.1471 | 0.0624 | 0.0529 | 9.7809 | 11.6667 | 0.8384 |
189 | 0.0936 | 0.1292 | 0.0622 | 0.0612 | 0.074 | 0.0287 | 0.1373 | 0.1581 | 0.1509 | 0.105 | 10.0508 | 11.1649 | 0.9002 |
189 | 0.076 | 0.129 | 0.0796 | 0.1035 | 0.1198 | 0.1222 | 0.0691 | 0.0886 | 0.1478 | 0.0644 | 8.8985 | 12.2818 | 0.7245 |
189 | 0.1398 | 0.1299 | 0.1274 | 0.0732 | 0.1406 | 0.0577 | 0.0663 | 0.1384 | 0.0603 | 0.0664 | 11.75 | 11.7868 | 0.9969 |
189 | 0.0662 | 0.1391 | 0.1232 | 0.1277 | 0.1173 | 0.0716 | 0.1529 | 0.0664 | 0.0639 | 0.0717 | 9.2183 | 12.9492 | 0.7119 |
189 | 0.1104 | 0.0949 | 0.0729 | 0.0676 | 0.116 | 0.0957 | 0.1458 | 0.0687 | 0.0776 | 0.1505 | 10.1203 | 12.3405 | 0.8201 |
189 | 0.0822 | 0.0639 | 0.0998 | 0.1348 | 0.1226 | 0.0961 | 0.0658 | 0.1469 | 0.0441 | 0.1438 | 12.5802 | 10.9016 | 1.154 |
252 | 0.0508 | 0.0521 | 0.1244 | 0.0986 | 0.137 | 0.1436 | 0.0919 | 0.1395 | 0.086 | 0.076 | 4.3676 | 17.9887 | 0.2428 |
252 | 0.1583 | 0.1589 | 0.0702 | 0.0645 | 0.0728 | 0.0751 | 0.1436 | 0.068 | 0.1268 | 0.0617 | 2.0128 | 16.7656 | 0.1201 |
252 | 0.0512 | 0.0446 | 0.0623 | 0.1132 | 0.1408 | 0.0582 | 0.1555 | 0.1276 | 0.1463 | 0.1004 | 4.0663 | 16.7968 | 0.2421 |
252 | 0.0654 | 0.0652 | 0.1234 | 0.1364 | 0.0873 | 0.133 | 0.135 | 0.0564 | 0.1292 | 0.0687 | 2.6325 | 17.4595 | 0.1508 |
252 | 0.1208 | 0.1271 | 0.044 | 0.1287 | 0.134 | 0.076 | 0.0606 | 0.1395 | 0.0688 | 0.1005 | 3.0681 | 18.2285 | 0.1683 |
252 | 0.1431 | 0.1537 | 0.1394 | 0.1125 | 0.0346 | 0.1425 | 0.054 | 0.0804 | 0.0477 | 0.092 | 3.7025 | 18.5062 | 0.2001 |
252 | 0.06 | 0.1254 | 0.1335 | 0.0947 | 0.1431 | 0.0643 | 0.0858 | 0.0614 | 0.1145 | 0.1174 | 3.5083 | 18.6232 | 0.1884 |
252 | 0.0587 | 0.0988 | 0.0414 | 0.1616 | 0.0512 | 0.0958 | 0.0624 | 0.1221 | 0.1317 | 0.1762 | 8.7067 | 16.8551 | 0.5166 |
252 | 0.1393 | 0.0748 | 0.1213 | 0.1038 | 0.0931 | 0.0361 | 0.0639 | 0.149 | 0.1407 | 0.078 | 2.9008 | 17.7913 | 0.163 |
252 | 0.129 | 0.0827 | 0.0593 | 0.0889 | 0.0751 | 0.1199 | 0.1338 | 0.1365 | 0.0578 | 0.1168 | 5.1899 | 16.8419 | 0.3082 |
252 | 0.0912 | 0.1272 | 0.1136 | 0.0715 | 0.0648 | 0.0875 | 0.1385 | 0.1171 | 0.0524 | 0.1363 | 6.218 | 17.5395 | 0.3545 |
252 | 0.0551 | 0.1546 | 0.065 | 0.0776 | 0.1073 | 0.1589 | 0.1581 | 0.0412 | 0.0668 | 0.1152 | 5.0746 | 17.1982 | 0.2951 |
252 | 0.1519 | 0.0514 | 0.0558 | 0.0695 | 0.1142 | 0.1346 | 0.0832 | 0.0696 | 0.1445 | 0.1254 | 4.3643 | 16.4727 | 0.2649 |
252 | 0.055 | 0.1442 | 0.0854 | 0.0582 | 0.0833 | 0.1675 | 0.0444 | 0.139 | 0.1364 | 0.0865 | 8.1714 | 17.1688 | 0.4759 |
252 | 0.143 | 0.0636 | 0.1075 | 0.1178 | 0.1205 | 0.0776 | 0.133 | 0.0575 | 0.0695 | 0.1101 | 0.8672 | 18.1892 | 0.0477 |
The CSV files are available in the ZIP file: Dogs Of The Dow 2023 Results.
If you wish to see these results for well known portfolios each month, please let us know in the comments and provide a link to the requested portfolio.
If you find information presented in this article useful, we ask that you provide value in return via the Value 4 Value links on the homepage. We would also appreciate you spreading the word about our work.
ADDENDUM
We repeated this analysis with modifications of the steps listed above.
1. Vanguard stock sector ETFs
2. long and short trades
4. simulation was for 100 days, with rebalancing at the end of each quarter (last date was 20230811)
5. additional analytics: slope of the simulated time series, standard_deviation, and breakout shifted (last time series value – min value)/(max value – min value)
Also, we show results for the maximum and minimum values of each analysis type.
Vanguard Stock Sectors ETFs
Name | |
---|---|
VOX | Vanguard Communication Services ETF |
VCR | Vanguard Consumer Discretionary ETF |
VDC | Vanguard Consumer Staples ETF |
VDE | Vanguard Energy ETF |
VFH | Vanguard Financials ETF |
VHT | Vanguard Health Care ETF |
VIS | Vanguard Industrials ETF |
VGT | Vanguard Information Technology ETF |
VAW | Vanguard Materials ETF |
VNQ | Vanguard Real Estate ETF |
VPU | Vanguard Utilities ETF |
Maximum and Minimum Analytics
total_return | breakout_shifted | slope | maximum_drawdown | pseudo_mar | standard_deviation | VOX | VCR | VDC | VDE | VFH | VHT | VIS | VGT | VAW | VNQ | VPU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.0251 | 0.8898 | 0.1552 | 3.0834 | 4.2242 | 4.6831 | 0.2646 | 0.2083 | 0.0717 | 0.0753 | 0.1023 | 0.0197 | 0.0759 | 0.0593 | -0.003 | -0.0138 | -0.1061 |
-12.1205 | 0.1287 | -0.145 | 14.8279 | -0.8174 | 4.4729 | -0.1333 | -0.1592 | -0.0372 | -0.1585 | -0.0245 | -0.0114 | -0.1127 | -0.1685 | -0.1028 | -0.0353 | 0.0565 |
3.9686 | 1.0 | 0.0268 | 2.6959 | 1.4721 | 1.2369 | -0.0697 | 0.167 | -0.0135 | 0.184 | 0.1789 | -0.0014 | 0.0439 | -0.1081 | -0.1577 | -0.038 | -0.0378 |
-3.6218 | 0.0 | -0.0158 | 3.252 | -1.1137 | 0.6382 | -0.0897 | -0.1185 | 0.014 | -0.0983 | 0.0649 | -0.1567 | -0.0486 | 0.1062 | 0.0811 | 0.1337 | 0.0883 |
12.2392 | 0.7847 | 0.1774 | 3.1717 | 3.8588 | 5.4162 | 0.0917 | 0.2572 | -0.0438 | -0.0138 | 0.056 | 0.0499 | 0.1851 | 0.2034 | 0.0693 | 0.0096 | 0.0202 |
-10.898 | 0.2008 | -0.15 | 14.2464 | -0.765 | 4.5565 | -0.1765 | -0.1994 | 0.0512 | -0.0276 | 0.0459 | -0.0122 | -0.0736 | -0.271 | -0.0473 | 0.0459 | -0.0494 |
5.7212 | 1.0 | 0.0524 | 0.7201 | 7.945 | 1.5404 | 0.0463 | 0.0391 | 0.1286 | 0.0904 | -0.0926 | 0.1333 | 0.1134 | 0.0929 | -0.1201 | -0.0349 | -0.1084 |
-2.3538 | 0.0 | -0.0046 | 1.8377 | -1.2809 | 0.4263 | -0.1398 | 0.072 | 0.0079 | -0.0831 | 0.1004 | -0.1187 | 0.0862 | -0.0328 | -0.146 | 0.119 | 0.0941 |
12.2392 | 0.7847 | 0.1774 | 3.1717 | 3.8588 | 5.4162 | 0.0917 | 0.2572 | -0.0438 | -0.0138 | 0.056 | 0.0499 | 0.1851 | 0.2034 | 0.0693 | 0.0096 | 0.0202 |
-0.5314 | 0.0802 | -0.0008 | 0.9709 | -0.5474 | 0.2127 | 0.1513 | 0.0018 | 0.0819 | -0.0861 | 0.121 | -0.1419 | -0.0939 | -0.087 | 0.0776 | -0.0782 | 0.0792 |
-11.3135 | 0.1876 | -0.1481 | 15.508 | -0.7295 | 4.5816 | -0.1688 | -0.1251 | 0.0039 | -0.0747 | -0.0388 | -0.0265 | -0.0958 | -0.1963 | -0.1665 | -0.0622 | -0.0416 |
2.2715 | 0.9204 | 0.023 | 0.5935 | 3.8275 | 0.7094 | 0.091 | -0.1226 | 0.1315 | -0.0145 | -0.0474 | 0.0971 | 0.1405 | 0.058 | -0.128 | 0.0687 | -0.1007 |
K-Means Weights and Analytics
total_return | breakout_shifted | slope | maximum_drawdown | pseudo_mar | standard_deviation | VOX | VCR | VDC | VDE | VFH | VHT | VIS | VGT | VAW | VNQ | VPU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.3023 | 0.64 | 0.0371 | 1.4064 | 1.6371 | 1.1607 | 0.1293 | -0.1243 | -0.042 | -0.0651 | -0.0769 | 0.1069 | 0.0731 | 0.0931 | 0.1185 | 0.0831 | -0.0878 |
-1.501 | 0.0 | -0.0049 | 3.0755 | -0.4881 | 0.6633 | 0.0206 | -0.126 | 0.0463 | -0.0477 | -0.0988 | -0.1189 | 0.1254 | 0.138 | -0.0583 | -0.105 | 0.1151 |
-1.2417 | 0.0881 | -0.0017 | 4.8777 | -0.2546 | 1.2024 | 0.0863 | -0.0673 | -0.077 | -0.1032 | 0.0832 | -0.0353 | -0.1225 | 0.1199 | -0.1102 | -0.1047 | -0.0905 |
1.3176 | 0.9105 | 0.0077 | 3.9067 | 0.3373 | 1.0222 | -0.0153 | 0.0246 | 0.106 | 0.1165 | -0.1022 | -0.1316 | 0.1129 | -0.0791 | 0.1155 | 0.0985 | 0.0978 |
0.2546 | 0.6339 | -0.0022 | 1.4983 | 0.17 | 0.294 | -0.0941 | 0.0578 | -0.0919 | 0.0939 | -0.0854 | 0.0875 | -0.0895 | 0.0797 | -0.1117 | 0.1291 | -0.0795 |
-0.5426 | 0.7349 | -0.0249 | 3.7 | -0.1466 | 0.9774 | -0.0715 | -0.1148 | -0.0759 | 0.0959 | 0.1127 | 0.0717 | 0.1354 | -0.0838 | -0.064 | -0.0666 | -0.1077 |
0.3817 | 0.395 | 0.0172 | 2.364 | 0.1615 | 0.7754 | 0.059 | -0.1433 | 0.1019 | -0.0884 | 0.142 | 0.0684 | -0.0657 | 0.1132 | 0.0373 | 0.0835 | 0.0974 |
2.285 | 0.5825 | 0.0589 | 2.6511 | 0.8619 | 1.922 | -0.0754 | 0.1172 | -0.0419 | -0.1368 | 0.0915 | -0.0868 | 0.0883 | 0.0974 | 0.1065 | -0.0712 | -0.087 |
1.1123 | 0.634 | 0.0336 | 1.3779 | 0.8072 | 1.0774 | 0.1366 | 0.1034 | -0.0849 | -0.092 | 0.1099 | -0.0891 | 0.0284 | -0.1187 | -0.0477 | 0.1202 | 0.069 |
3.0186 | 1.0 | 0.0051 | 2.0734 | 1.4559 | 0.6288 | 0.1397 | 0.0817 | 0.1141 | 0.1041 | -0.065 | 0.0498 | -0.0997 | -0.122 | 0.0804 | -0.0724 | -0.0711 |
9.4829 | 0.8723 | 0.1051 | 3.249 | 2.9187 | 3.4097 | 0.0534 | 0.1118 | 0.0769 | 0.116 | 0.1134 | 0.1227 | 0.1299 | 0.062 | 0.0963 | -0.055 | 0.0625 |
-2.1872 | 0.3258 | -0.0398 | 4.3344 | -0.5046 | 1.2799 | -0.1233 | 0.054 | 0.0795 | 0.0702 | 0.1437 | -0.0611 | -0.1162 | -0.0598 | -0.0624 | -0.1284 | 0.1014 |
0.1319 | 0.5086 | 0.0059 | 2.0971 | 0.0629 | 0.6209 | 0.1072 | -0.0954 | -0.143 | 0.0723 | 0.0269 | -0.0912 | -0.0902 | 0.0472 | 0.1232 | 0.0625 | 0.1408 |
-8.0741 | 0.1845 | -0.097 | 10.9541 | -0.7371 | 3.0367 | -0.1026 | -0.0661 | -0.0355 | -0.0713 | -0.1287 | -0.0771 | -0.0631 | -0.1395 | -0.0885 | 0.1121 | -0.1154 |
-3.4693 | 0.1363 | -0.0373 | 4.1633 | -0.8333 | 1.1567 | -0.1109 | 0.0923 | -0.1117 | -0.088 | -0.0762 | 0.088 | 0.0603 | -0.1197 | 0.0698 | -0.0858 | 0.0972 |